dbl
如何掌握LabVIEW的數(shù)值數(shù)據(jù)類型-I8、I16、I32、SGL、DBL等 - 墨天輪
如何掌握LabVIEW的數(shù)值數(shù)據(jù)類型-I8、I16、I32、SGL、DBL等 - 墨天輪
排行 數(shù)據(jù)庫百科 核心案例 行業(yè)報告 月度解讀 大事記 產(chǎn)業(yè)圖譜
中國數(shù)據(jù)庫
向量數(shù)據(jù)庫
時序數(shù)據(jù)庫
實時數(shù)據(jù)庫
搜索引擎
空間數(shù)據(jù)庫
圖數(shù)據(jù)庫
數(shù)據(jù)倉庫
大調(diào)查
2021年報告
2022年報告
年度數(shù)據(jù)庫
2020年openGauss
2021年TiDB
2022年PolarDB
2023年OceanBase
首頁
資訊
數(shù)說
活動
大會
學習 課程中心 推薦優(yōu)質(zhì)內(nèi)容、熱門課程學習路徑 預設學習計劃、達成學習目標知識圖譜 綜合了解技術體系知識點課程庫 快速篩選、搜索相關課程視頻學習 專業(yè)視頻分享技術知識電子文檔 快速搜索閱覽技術文檔文檔
問答
工具 SQLRUN 在線數(shù)據(jù)庫即時SQL運行平臺數(shù)據(jù)庫在線實訓平臺 實操環(huán)境、開箱即用、一鍵連接AWR分析 上傳AWR報告,查看分析結果SQL格式化 快速格式化絕大多數(shù)SQL語句SQL審核 審核編寫規(guī)范,提升執(zhí)行效率PLSQL解密 解密超4000字符的PL/SQL語句OraC函數(shù) 查詢Oracle C 函數(shù)的詳細描述智能助手小墨 關于數(shù)據(jù)庫相關的問題,您都可以問我 數(shù)據(jù)庫百科核心案例行業(yè)報告月度解讀大事記產(chǎn)業(yè)圖譜我的訂單
登錄后可立即獲得以下權益 免費培訓課程 收藏優(yōu)質(zhì)文章 疑難問題解答 下載專業(yè)文檔 簽到免費抽獎 提升成長等級 立即登錄 登錄 注冊 登錄 注冊 首頁資訊數(shù)說活動大會課程文檔排行問答我的訂單 微信掃碼 復制鏈接 新浪微博 分享數(shù)說 采集到收藏夾 分享到數(shù)說 首頁 /
如何掌握LabVIEW的數(shù)值數(shù)據(jù)類型-I8、I16、I32、SGL、DBL等 如何掌握LabVIEW的數(shù)值數(shù)據(jù)類型-I8、I16、I32、SGL、DBL等 虛擬儀器技術及應用 2022-04-20 12017
所有人應該都知道,可用于加減乘除等數(shù)學運算的數(shù)字(如5,23,12.6,13.7)都應該用數(shù)值數(shù)據(jù)類型來表示。但是大部分人對數(shù)值數(shù)據(jù)類型的分類認識僅有整型、單精度和雙精度三個分類,對使用的認識也僅停留在整數(shù)選用整型,小數(shù)選用單精度或雙精度這種很粗的層次。而LabVIEW的數(shù)值數(shù)據(jù)類型實在有點多(有I8、I16、I32、U8、U16、U32、SGL、DBL、EXT、CSG、CDB、CXT共12種),且在使用時是通過設置的方式來指定數(shù)據(jù)類型(而不是文本式語言直觀的文字表示方式,如int a或者double a),很多人就有點蒙了。那么,應該如何掌握LabVIEW的數(shù)值數(shù)據(jù)類型呢?第一步是要先認識LabVIEW的所有數(shù)值數(shù)據(jù)類型。(一)LabVIEW的數(shù)值數(shù)據(jù)類型介紹LabVIEW的數(shù)值型控件都會默認一種類型,且不同的數(shù)據(jù)類型的端口圖標會有不同的外觀。下圖展示了所有LabVIEW的數(shù)值數(shù)據(jù)類型的數(shù)據(jù)端口外觀。數(shù)一下圖標數(shù)量,發(fā)現(xiàn)足足有24種,是不是有點崩潰?但不要著急,大家先注意一下各個圖標上的文字,會發(fā)現(xiàn),有兩兩一對的圖標上標的文字是一樣的,如下圖:這兩兩一對被框起來的圖標其實是同一種數(shù)據(jù)類型,他們只是外觀不同,所以雖然有24種圖標,其實只有12種數(shù)據(jù)類型。且通過這個介紹,大家也認識到,可以通過圖標上的文字來識別數(shù)據(jù)類型。根據(jù)上圖中各個圖標上的文字,可以知道LabVIEW共有I8、I16、I32、U8、U16、U32、SGL、DBL、EXT、CSG、CDB、CXT共12種數(shù)值數(shù)據(jù)類型。這種外觀不同但是屬于同種類型的數(shù)據(jù)端口外觀可以通過右鍵點擊數(shù)據(jù)端口,在彈出的菜單中勾選和不勾選“View As Icon”菜單項來實現(xiàn)切換,如下圖所示。勾選“View As Icon”顯示的是比較大的圖標外觀,不勾選“View As Icon”顯示的較小的端口外觀。下面統(tǒng)一以端口外觀的形式繼續(xù)介紹LabVIEW的數(shù)值數(shù)據(jù)類型,如下圖。根據(jù)我們使用的數(shù)據(jù)類型,上面的12種圖標又可以分為三類,分別對應整數(shù)(如5,34,125)、小數(shù)(如0.12,1.34,567.8)和復數(shù)(如2+3i,5+6.2i,1.3+4.5i),如下圖:大家此時也可能注意到,端口的顏色也不一樣。顏色確實是LabVIEW用于表達數(shù)據(jù)類型不同的一個手段。上圖中,藍色用于表示整數(shù),橙色用于表示小數(shù)(對復數(shù),表示復數(shù)的實部和虛部為小數(shù))。我們接下來先來看整數(shù)。整數(shù)進一步分為6種數(shù)據(jù)類型,分別為I8、I16、I32、U8、U16、U32。整數(shù)的這種分類是根據(jù)數(shù)據(jù)范圍來劃分的,其中I8可表示的數(shù)據(jù)范圍是-128~127,I16表示的數(shù)據(jù)范圍是-32768~32767,I32表示的數(shù)據(jù)范圍是-2147484648~2147483637,U8表示的數(shù)據(jù)范圍是0~255,U16表示的數(shù)據(jù)范圍是0~65535,U32表示的數(shù)據(jù)范圍是0~4294967925。大家還可以從各種整數(shù)數(shù)據(jù)類型的名字來進一步了解。如對I8,I表示Integer(整數(shù)的英文),8表示用8位二進制表示一個數(shù),那么I8表示的是8位有符號整數(shù)(帶正負號的整數(shù))。同理,I16表示的是16位的有符號整數(shù),I32表示的是32位的有符號整數(shù)。位數(shù)越多,那么可表示的數(shù)據(jù)范圍越大,所以大家也不必要把各種數(shù)據(jù)類型表示的數(shù)據(jù)范圍背誦下來,大體對各種數(shù)據(jù)類型表示的數(shù)據(jù)范圍有印象,且知道表示的數(shù)據(jù)類型的范圍從小到大的順序為 I8、I16、I32就可以。同樣,對U8,U表示Unsigned Integer(無符號整數(shù)的英文),8表示用8位二進制表示一個數(shù),其不表示符號位,所以其表示的整數(shù)范圍與I8不一樣,I8為-128~127,U8為0~255。繼續(xù)來看小數(shù)。小數(shù)進一步分為3種數(shù)據(jù)類型,分別為SGL、DBL、EXT。同樣,小數(shù)的這種分類也是根據(jù)數(shù)據(jù)范圍來細分的,其中SGL可表示的數(shù)據(jù)范圍為:最小正數(shù)1.40e-45,最大正數(shù)3.40e+38,最小負數(shù)-1.40e-45,最大負數(shù)-3.40e+38;DBL可表示的數(shù)據(jù)范圍為:最小正數(shù)4.94e-324,最大正數(shù)1.79e+308,最小負數(shù)-4.94e-324,最大負數(shù)-1.79e+308;EXT可表示的數(shù)據(jù)范圍為:最小正數(shù)6.48e-4966,最大正數(shù)1.19e+4932,最小負數(shù)-6.48e-4966,最大負數(shù)-1.19e+4932。大家同樣可以從各種小數(shù)數(shù)據(jù)類型的名字來進一步了解。如對SGL,英文全稱為Single,表示單精度浮點數(shù),跟其他語言的單精度浮點數(shù)數(shù)據(jù)類型是一樣的;如對DBL,英文全稱為Double,表示雙精度浮點數(shù),跟其他語言的雙精度浮點數(shù)的數(shù)據(jù)類型也是一樣的;而EXT,英文全稱為Extended,表示擴展精度浮點數(shù),很多其他語言都沒有這種數(shù)據(jù)類型,這是因為LabVIEW是專門用于虛擬儀器的語言,很多時候對數(shù)據(jù)有很大的范圍和精度要求。繼續(xù)來看復數(shù)。復數(shù)也進一步細分為3種數(shù)據(jù)類型,分別為CSG、CDB和CXT。其中,CSG表示實部和虛部用SGL表示的復數(shù),CSG中,C為Complex,表示復數(shù);SG表示SGL,Single,表示實部和虛部用單精度數(shù)據(jù)類型表示。CDB表示實部和虛部用DBL表示的復數(shù),CDB中,C為Complex,表示復數(shù);DB表示DBL,Double,表示實部和虛部用雙精度數(shù)據(jù)類型表示。CXT表示實部和虛部用EXT表示的復數(shù),CXT中,C為Complex,表示復數(shù);XT表示EXT,Extended,表示實部和虛部用擴展精度數(shù)據(jù)類型表示。好了,到此大家應該全面了解了LabVIEW的所有數(shù)值數(shù)據(jù)類型。下來就是如何選用LabVIEW的數(shù)值數(shù)據(jù)類型的問題。(二)LabVIEW的數(shù)值數(shù)據(jù)類型選用如果充分了解了LabVIEW的數(shù)值數(shù)據(jù)類型,對其選用是極為簡單的。大家其實也注意到了不同的數(shù)據(jù)類型本質(zhì)是其表示的數(shù)據(jù)范圍和精度不一樣,那么就根據(jù)你要使用的場合、計算精度、范圍和存儲空間要求選擇即可。具體方法為:(1)根據(jù)要使用的數(shù)據(jù)是整數(shù)、小數(shù)還是復數(shù)確定數(shù)值數(shù)據(jù)類型大的分類選擇;(2)根據(jù)要使用的數(shù)據(jù)的數(shù)據(jù)范圍選擇一個可包含其范圍的數(shù)據(jù)類型。比如,要表示的數(shù)據(jù)是整數(shù),其范圍為138-380,則應選擇的最合適的數(shù)據(jù)類型為U16或者I16。當然,I32、U32、SGL、DBL、EXT也是可以滿足使用要求的,就是會浪費存儲空間。又比如,要表示的數(shù)據(jù)是小數(shù),其范圍為-1245.9-+9999.9,那么應選擇的最合適的數(shù)據(jù)類型為SGL。當然,DBL和EXT也是可以滿足使用要求的,就是會浪費存儲空間。下面整理出了各種數(shù)據(jù)類型的數(shù)值范圍,需要選擇數(shù)據(jù)類型時,大家可以參考該表格。(三)練習題若要表示的數(shù)據(jù)范圍分別為-126-125和-50000000000-50000000000,應分別選用哪種數(shù)據(jù)類型最合適?若要表示的數(shù)據(jù)是3+4i,又應該選用哪種數(shù)據(jù)類型最合適?
labviewi8 文章轉載自虛擬儀器技術及應用,如果涉嫌侵權,請發(fā)送郵件至:[email protected]進行舉報,并提供相關證據(jù),一經(jīng)查實,墨天輪將立刻刪除相關內(nèi)容。 評論 領墨值 有獎問卷 意見反饋 客服小墨
5-臨床數(shù)據(jù)管理員(DM)需知道的英文表達或縮寫(持續(xù)更新) - 知乎
5-臨床數(shù)據(jù)管理員(DM)需知道的英文表達或縮寫(持續(xù)更新) - 知乎首發(fā)于DM入門切換模式寫文章登錄/注冊5-臨床數(shù)據(jù)管理員(DM)需知道的英文表達或縮寫(持續(xù)更新)DM潘小白臨床數(shù)據(jù)管理員,DM。B站同名。一、機構或組織CRO(Contract Research Organization)合同研究組織SMO(Site Management Organization) 現(xiàn)場管理組織Sponsor:申辦方FDA(Food and Drug Administration)美國食品藥品監(jiān)督管理局NMPA(National Medical Products Administration)國家藥品監(jiān)督管理局CDE(Center for Drug Evaluation)國家藥品監(jiān)督管理局藥品審批中心EC(Ethics?Committee)/IEC(Independent Ethics?Committee)(獨立)倫理委員會IRB(Institutional Review Board)機構審查委員會倫理委員會和機構審查委員會是一個意思,EC是歐盟的稱呼(摘自Wikipedia:The ethics committee is an independent body in a member state of the European Union。),而IRB是美國的稱呼(摘自Wikipedia:"IRB" is a generic term used in the United States by the FDA and HHS)。ICH(International Council for Harmonization)國際協(xié)調(diào)會議CDISC(Clinical Data Interchange Standards Consortium)臨床數(shù)據(jù)交換標準協(xié)會DSMB/IDMC(Data Safety and Monitoring Board/Independent Data Monitoring Committee)數(shù)據(jù)與安全監(jiān)察委員會/獨立數(shù)據(jù)監(jiān)察委員會ISO(International Standard Organization)國際化標準組織WHO(World Health Organization)世界衛(wèi)生組織SCDM(Society for Clinical Data Management)美國臨床試驗數(shù)據(jù)管理學會CDMC(Clinical Data Management Working Group of China)中國臨床試驗數(shù)據(jù)管理學組DIA(Drug Information Association)藥物信息協(xié)會二、崗位或職位DM(Data Manager)數(shù)據(jù)管理員CRA(Clinical Research Assistant)臨床監(jiān)查員CRC(Clinical Research Coordinator)臨床協(xié)調(diào)員CTA(Clinical Trial Assistant)臨床試驗助理PI(Principal Investigator)主要研究者Co-I(Co-Investigator)共同研究者,是ICH-GCP之前的一個術語,后來被Sub-I取代。(Co-investigator is a term that pre-dates the ICH GCP's. It has subsequently been replaced by the term sub-investigator.)可以執(zhí)行全部或部分PI功能,但他們不承擔研究的主要責任,受PI的監(jiān)督,協(xié)助其進行研究項目的管理和領導。CI(Coordinating Investigator)協(xié)調(diào)研究者An investigator assigned the responsibility for the coordination of investigators at different centres participating in a multicentre trial. (ICH-GCP)被指定負責協(xié)調(diào)參加一項多中心試驗的各中心研究者工作的一名研究者。Sub-I/SI(Sub-Investigator)次要研究者SP(SAS Programmer)SAS程序員Biostatistician:生物統(tǒng)計師DBD(Database Designer)數(shù)據(jù)庫設計員/建庫員PV(Pharmacovigilance)藥物警戒MSL(Medical Science Liaison)醫(yī)學聯(lián)絡官MA(Medical Advisor)醫(yī)學顧問BD(Business Development)商務拓展PM(Project Manager)項目經(jīng)理 APM(Assistant Project Manager) 項目經(jīng)理助理三、文件GCP(Good Clinical Practice)臨床試驗質(zhì)量管理規(guī)范GCDMP(Good Clinical Data Management Practice)臨床數(shù)據(jù)質(zhì)量管理規(guī)范ICF (Informed Consent Form)知情同意書IB(Investigator's Brochure)研究者手冊SOP(Standard Operation Procedure)標準操作規(guī)程TMF(Trial Master File)臨床試驗中央文件夾CRF(Case Report form)病例報告表eCRF(Electronic Case Report form)電子病例報告表Mock CRF:模擬CRF。未完成建庫前設計的用于遞交倫理的CRF,簡稱CRF。eCCG(eCRF Completion Guide)eCRF填寫指南DMP(Data Management Plan)數(shù)據(jù)管理計劃DVP(Data Validation Plan)數(shù)據(jù)核查計劃DVR(Data Validation Report)數(shù)據(jù)核查報告DMR(Data Management Report)數(shù)據(jù)管理報告SAP(Statistical Analysis Plan)統(tǒng)計分析計劃DCF(Data Clarification Form)數(shù)據(jù)澄清表Protocol:方案四、工作相關EDC(Electronic Data Capture)電子數(shù)據(jù)采集CTMS(Clinical Trial Management System)臨床試驗信息管理系統(tǒng)CDMS(Clinical Data Management System)臨床數(shù)據(jù)管理系統(tǒng)以上三者系統(tǒng)的區(qū)別與聯(lián)系:FPFV(First Patient First Visit)第一例患者的第一次訪視LPLV(Last Patient Last Visit)最后一例患者最后一次訪視SDV(Source?Data?Verification)原始數(shù)據(jù)核查PD(Protocol Deviation)方案偏離EOT(End of Treatment)中止試驗DBL(Database Locking)數(shù)據(jù)庫鎖定UAT(User Acceptance Testing)用戶接受測試QC(Quality Control)質(zhì)量控制ADR(Adverse?Drug?Reaction)藥品不良反應AE(Adverse Event)不良事件SAE(Serious Adverse Event)嚴重不良事件SUSAR(Suspected Unexpected Serious Adverse Reaction )可疑的非預期的嚴重不良反應site:中心subject:受試者visit:訪視screen:篩選enrollment:入組query:質(zhì)疑timeline:時間表CRF design:CRF設計database setup:數(shù)據(jù)庫建立system validation and change control:系統(tǒng)驗證及變更控制data validation programming/edit check:邏輯核查data entry:數(shù)據(jù)錄入coding:編碼handling lab normal ranges:實驗室指標正常值范圍SAE reconciliation:SAE一致性檢驗data audit:數(shù)據(jù)稽查database lock/unlock:數(shù)據(jù)庫鎖定及解鎖document management:文檔管理archive:歸檔training:培訓transfer/extraction of data:數(shù)據(jù)轉入轉出external data/non-CRF data:外部數(shù)據(jù)access control:權限控制electronic signature:電子簽名blind review:盲態(tài)審核audit trail:稽查軌跡protocol deviation:方案偏離新增(重要級別與上面相比較低):ICSR(Individual Case Safety Reports)個例藥品不良反應報告PMDA(Pharmaceutical and Medical Devices Agency)日本藥品及醫(yī)療器械管理局MAH(Marketing Authorization Holder)上市許可持有人編輯于 2021-06-08 20:38臨床試驗臨床數(shù)據(jù)管理?贊同 72??3 條評論?分享?喜歡?收藏?申請轉載?文章被以下專欄收錄DM入門介紹臨床數(shù)據(jù)管理相關的基礎知識,適合無經(jīng)
全網(wǎng)嘔血整理:關于YOLO v3原理分析 - 知乎
全網(wǎng)嘔血整理:關于YOLO v3原理分析 - 知乎首發(fā)于程序員之家切換模式寫文章登錄/注冊全網(wǎng)嘔血整理:關于YOLO v3原理分析華為云開發(fā)者聯(lián)盟?已認證賬號摘要:YOLO系列的目標檢測算法可以說是目標檢測史上的宏篇巨作,接下來我們來詳細介紹一下YOLO v3算法內(nèi)容。算法基本思想首先通過特征提取網(wǎng)絡對輸入特征提取特征,得到特定大小的特征圖輸出。輸入圖像分成13×13的grid cell,接著如果真實框中某個object的中心坐標落在某個grid cell中,那么就由該grid cell來預測該object。每個object有固定數(shù)量的bounding box,YOLO v3中有三個bounding box,使用邏輯回歸確定用來預測的回歸框。網(wǎng)絡結構上圖DBL是Yolo v3的基本組件。Darknet的卷積層后接BatchNormalization(BN)和LeakyReLU。除最后一層卷積層外,在yolo v3中BN和LeakyReLU已經(jīng)是卷積層不可分離的部分了,共同構成了最小組件。主干網(wǎng)絡中使用了5個resn結構。n代表數(shù)字,有res1,res2, … ,res8等等,表示這個res_block里含有n個res_unit,這是Yolo v3的大組件。從Yolo v3開始借鑒了ResNet的殘差結構,使用這種結構可以讓網(wǎng)絡結構更深。對于res_block的解釋,可以在上圖網(wǎng)絡結果的右下角直觀看到,其基本組件也是DBL。在預測支路上有張量拼接(concat)操作。其實現(xiàn)方法是將darknet中間層和中間層后某一層的上采樣進行拼接。值得注意的是,張量拼接和Res_unit結構的add的操作是不一樣的,張量拼接會擴充張量的維度,而add只是直接相加不會導致張量維度的改變。Yolo_body一共有252層。23個Res_unit對應23個add層。BN層和LeakyReLU層數(shù)量都是72層,在網(wǎng)絡結構中的表現(xiàn)為:每一層BN后面都會接一層LeakyReLU。上采樣和張量拼接操作各2個,5個零填充對應5個res_block。卷積層一共有75層,其中有72層后面都會接BatchNormalization和LeakyReLU構成的DBL。三個不同尺度的輸出對應三個卷積層,最后的卷積層的卷積核個數(shù)是255,針對COCO數(shù)據(jù)集的80類:3×(80+4+1)=255,3表示一個grid cell包含3個bounding box,4表示框的4個坐標信息,1表示置信度。下圖為具體網(wǎng)絡結果圖。輸入映射到輸出不考慮神經(jīng)網(wǎng)絡結構細節(jié)的話,總的來說,對于一個輸入圖像,YOLO3將其映射到3個尺度的輸出張量,代表圖像各個位置存在各種對象的概率。我們看一下YOLO3共進行了多少個預測。對于一個416*416的輸入圖像,在每個尺度的特征圖的每個網(wǎng)格設置3個先驗框,總共有 13*13*3 + 26*26*3 + 52*52*3 = 10647 個預測。每一個預測是一個(4+1+80)=85維向量,這個85維向量包含邊框坐標(4個數(shù)值),邊框置信度(1個數(shù)值),對象類別的概率(對于COCO數(shù)據(jù)集,有80種對象)。邊界框預測(Bounding Box Prediction)Yolo v3關于bounding box的初始尺寸還是采用Yolo v2中的k-means聚類的方式來做,這種先驗知識對于bounding box的初始化幫助還是很大的,畢竟過多的bounding box雖然對于效果來說有保障,但是對于算法速度影響還是比較大的。在COCO數(shù)據(jù)集上,9個聚類如下表所示,注這里需要說明:特征圖越大,感受野越小。對小目標越敏感,所以選用小的anchor box。特征圖越小,感受野越大。對大目標越敏感,所以選用大的anchor box。Yolo v3采用直接預測相對位置的方法。預測出b-box中心點相對于網(wǎng)格單元左上角的相對坐標。直接預測出(tx,ty,tw,th,t0),然后通過以下坐標偏移公式計算得到b-box的位置大小和confidence。tx、ty、tw、th就是模型的預測輸出。cx和cy表示grid cell的坐標,比如某層的feature map大小是13×13,那么grid cell就有13×13個,第0行第1列的grid cell的坐標cx就是0,cy就是1。pw和ph表示預測前bounding box的size。bx、by、bw和bh就是預測得到的bounding box的中心的坐標和size。在訓練這幾個坐標值的時候采用了sum of squared error loss(平方和距離誤差損失),因為這種方式的誤差可以很快的計算出來。注:這里confidence = Pr(Object)*IoU 表示框中含有object的置信度和這個box預測的有多準。也就是說,如果這個框對應的是背景,那么這個值應該是 0,如果這個框對應的是前景,那么這個值應該是與對應前景 GT的IoU。Yolo v3使用邏輯回歸預測每個邊界框的分數(shù)。如果邊界框與真實框的重疊度比之前的任何其他邊界框都要好,則該值應該為1。如果邊界框不是最好的,但確實與真實對象的重疊超過某個閾值(Yolo v3中這里設定的閾值是0.5),那么就忽略這次預測。Yolo v3只為每個真實對象分配一個邊界框,如果邊界框與真實對象不吻合,則不會產(chǎn)生坐標或類別預測損失,只會產(chǎn)生物體預測損失。多尺度預測在上面網(wǎng)絡結構圖中可以看出,Yolo v3設定的是每個網(wǎng)格單元預測3個box,所以每個box需要有(x, y, w, h, confidence)五個基本參數(shù)。Yolo v3輸出了3個不同尺度的feature map,如上圖所示的y1, y2, y3。y1,y2和y3的深度都是255,邊長的規(guī)律是13:26:52。每個預測任務得到的特征大小都為N ×N ×[3?(4+1+80)] ,N為格子大小,3為每個格子得到的邊界框數(shù)量, 4是邊界框坐標數(shù)量,1是目標預測值,80是類別數(shù)量。對于COCO類別而言,有80個類別的概率,所以每個box應該對每個種類都輸出一個概率。所以3×(5 + 80) = 255。這個255就是這么來的。Yolo v3用上采樣的方法來實現(xiàn)這種多尺度的feature map。在Darknet-53得到的特征圖的基礎上,經(jīng)過六個DBL結構和最后一層卷積層得到第一個特征圖譜,在這個特征圖譜上做第一次預測。Y1支路上,從后向前的倒數(shù)第3個卷積層的輸出,經(jīng)過一個DBL結構和一次(2,2)上采樣,將上采樣特征與第2個Res8結構輸出的卷積特征張量連接,經(jīng)過六個DBL結構和最后一層卷積層得到第二個特征圖譜,在這個特征圖譜上做第二次預測。Y2支路上,從后向前倒數(shù)第3個卷積層的輸出,經(jīng)過一個DBL結構和一次(2,2)上采樣,將上采樣特征與第1個Res8結構輸出的卷積特征張量連接,經(jīng)過六個DBL結構和最后一層卷積層得到第三個特征圖譜,在這個特征圖譜上做第三次預測。就整個網(wǎng)絡而言,Yolo v3多尺度預測輸出的feature map尺寸為y1:(13×13),y2:(26×26),y3:(52×52)。網(wǎng)絡接收一張(416×416)的圖,經(jīng)過5個步長為2的卷積來進行降采樣(416 / 2?5 = 13,y1輸出(13×13)。從y1的倒數(shù)第二層的卷積層上采樣(x2,up sampling)再與最后一個26×26大小的特征圖張量連接,y2輸出(26×26)。從y2的倒數(shù)第二層的卷積層上采樣(x2,up sampling)再與最后一個52×52大小的特征圖張量連接,y3輸出(52×52)感受一下9種先驗框的尺寸,下圖中藍色框為聚類得到的先驗框。黃色框式ground truth,紅框是對象中心點所在的網(wǎng)格。預測框的3種情況預測框一共分為三種情況:正例(positive)、負例(negative)、忽略樣例(ignore)。(1)正例:任取一個ground truth, 與上面計算的10647個框全部計算IOU, IOU最大的預測框, 即為正例。并且一個預測框, 只能分配給一個ground truth。 例如第一個ground truth已經(jīng)匹配了一個正例檢測框, 那么下一個ground truth, 就在余下的10646個檢測框中, 尋找IOU最大的檢測框作為正例。ground truth的先后順序可忽略。正例產(chǎn)生置信度loss、檢測框loss、類別loss。預測框為對應的ground truth box標簽(使用真實的x、y、w、h計算出); 類別標簽對應類別為1, 其余為0; 置信度標簽為1。(2)忽略樣例:正例除外, 與任意一個ground truth的IOU大于閾值(論文中使用5), 則為忽略樣例。忽略樣例不產(chǎn)生任何loss。為什么會有忽略樣例?由于Yolov3采用了多尺度檢測, 那么再檢測時會有重復檢測現(xiàn)象. 比如有一個真實物體,在訓練時被分配到的檢測框是特征圖1的第三個box,IOU達0.98,此時恰好特征圖2的第一個box與該ground truth的IOU達0.95,也檢測到了該ground truth,如果此時給其置信度強行打0的標簽,網(wǎng)絡學習效果會不理想。(3)負例:正例除外(與ground truth計算后IOU最大的檢測框,但是IOU小于閾值,仍為正例), 與全部ground truth的IOU都小于閾值(0.5), 則為負例。負例只有置信度產(chǎn)生loss, 置信度標簽為0。如下圖所示:λ為權重參數(shù), 用于控制檢測框loss, obj與noobj的置信度loss, 以及類別對于正類而言, 1ijobj輸出為1; 對于負例而言, 1ijnoobj輸出為1; 對于忽略樣例而言, 全部為0;類別采用交叉熵作為損失函數(shù)。類別預測類別預測方面Yolo v2網(wǎng)絡中的Softmax分類器,認為一個目標只屬于一個類別,通過輸出Score大小,使得每個框分配到Score最大的一個類別。但在一些復雜場景下,一個目標可能屬于多個類(有重疊的類別標簽),因此Yolo v3用多個獨立的Logistic分類器替代Softmax層解決多標簽分類問題,且準確率不會下降。舉例說明,原來分類網(wǎng)絡中的softmax層都是假設一張圖像或一個object只屬于一個類別,但是在一些復雜場景下,一個object可能屬于多個類,比如你的類別中有woman和person這兩個類,那么如果一張圖像中有一個woman,那么你檢測的結果中類別標簽就要同時有woman和person兩個類,這就是多標簽分類,需要用Logistic分類器來對每個類別做二分類。Logistic分類器主要用到sigmoid函數(shù),該函數(shù)可以將輸入約束在0到1的范圍內(nèi),因此當一張圖像經(jīng)過特征提取后的某一類輸出經(jīng)過sigmoid函數(shù)約束后如果大于0.5,就表示該邊界框負責的目標屬于該類。物體分數(shù)和類置信度物體分數(shù):表示一個邊界框包含一個物體的概率,對于紅色框和其周圍的框幾乎都為1,但邊角的框可能幾乎都為0。物體分數(shù)也通過一個sigmoid函數(shù),表示概率值。類置信度:表示檢測到的物體屬于一個具體類的概率值,以前的YOLO版本使用softmax將類分數(shù)轉化為類概率。在YOLOv3中作者決定使用sigmoid函數(shù)取代,原因是softmax假設類之間都是互斥的,例如屬于“Person”就不能表示屬于“Woman”,然而很多情況是這個物體既是“Person”也是“Woman”。輸出處理我們的網(wǎng)絡生成10647個錨框,而圖像中只有一個狗,怎么將10647個框減少為1個呢?首先,我們通過物體分數(shù)過濾一些錨框,例如低于閾值(假設0.5)的錨框直接舍去;然后,使用NMS(非極大值抑制)解決多個錨框檢測一個物體的問題(例如紅色框的3個錨框檢測一個框或者連續(xù)的cell檢測相同的物體,產(chǎn)生冗余),NMS用于去除多個檢測框。具體使用以下步驟:拋棄分數(shù)低的框(意味著框對于檢測一個類信心不大);當多個框重合度高且都檢測同一個物體時只選擇一個框(NMS)。為了更方便理解,我們選用上面的汽車圖像。首先,我們使用閾值進行過濾一部分錨框。模型有19*19*3*85個數(shù),每個盒子由85個數(shù)字描述。將(19,19,3,85)分割為下面的形狀:box_confidence:(19,19,3,1)表示19*19個cell,每個cell的 3個框,每個框有物體的置信度概率;boxes:(19,19,3,4)表示每個cell 的3個框,每個框的表示;box_class_probs:(19,19,3,80)表示每個cell的3個框,每個框80個類檢測概率。每個錨框我們計算下面的元素級乘法并且得到錨框包含一個物體類的概率,如下圖:即使通過類分數(shù)閾值過濾一部分錨框,還剩下很多重合的框。第二個過程叫NMS,里面有個IoU,如下圖所示。實現(xiàn)非極大值抑制,關鍵在于:選擇一個最高分數(shù)的框;計算它和其他框的重合度,去除重合度超過IoU閾值的框;回到步驟1迭代直到?jīng)]有比當前所選框低的框。Loss Function在Yolo v3的論文里沒有明確提出所用的損失函數(shù),確切地說,Yolo系列論文里面只有Yolo v1明確提了損失函數(shù)的公式。在Yolo v1中使用了一種叫sum-square error的損失計算方法,只是簡單的差方相加。我們知道,在目標檢測任務里,有幾個關鍵信息是需要確定的:(x,y),(w,h),class,confidence 。根據(jù)關鍵信息的特點可以分為上述四類,損失函數(shù)應該由各自特點確定。最后加到一起就可以組成最終的loss function了,也就是一個loss function搞定端到端的訓練。yolov3網(wǎng)絡硬核講解(視頻)視頻地址:https://www.bilibili.com/video/BV12y4y1v7L6?from=search&seid=442233808730191461真實值是如何編碼預測錨框的設計錨框與目標框做iou本文分享自華為云社區(qū)《YOLOV3 原理分析(全網(wǎng)資料整理)》,原文作者:lutianfei 。點擊關注,第一時間了解華為云新鮮技術~發(fā)布于 2021-01-18 10:43目標檢測ResNet算法?贊同 150??6 條評論?分享?喜歡?收藏?申請轉載?文章被以下專欄收錄程序員之家歡迎投稿
dblp: computer science bibliography
dblp: computer science bibliography
Stop the war!Остановите войну!solidarity - (ua) - (ru)news - (ua) - (ru)donate - donate - donatefor scientists:ERA4UkraineAssistance in GermanyUkrainian Global University#ScienceForUkraine
default search actioncombined dblp searchauthor searchvenue searchpublication searchask othersGoogleGoogle ScholarSemantic ScholarInternet Archive ScholarCiteSeerXORCID
Welcome to dblp
Search dblp see FAQHow to use the dblp search?How to use the dblp search API?Which technology does dblp use for searching?powered by CompleteSearch, courtesy of Hannah Bast, University of Freiburg
Full-text search see FAQHow to use the dblp search?How to use the dblp search API?Which technology does dblp use for searching?
DagstuhlTrier
> Home
Please enter a search query see FAQ for more informationHow to use the dblp search?Which technology does dblp use for searching the website?case-insensitive prefix search: default e.g., sig matches "SIGIR" as well as "signal"exact word search: append dollar sign ($) to worde.g., graph$ matches "graph", but not "graphics"boolean and: separate words by spacee.g., codd modelboolean or: connect words by pipe symbol (|)e.g., graph|networkUpdate May 7, 2017: Please note that we had to disable the phrase search operator (.) and the boolean not operator (-) due to technical problems. For the time being, phrase search queries will yield regular prefix search result, and search terms preceded by a minus will be interpreted as regular (positive) search terms.Author search resultsexport search results asfirst 1000 hits only:XMLJSONJSONPno matches
Venue search resultsexport search results asfirst 1000 hits only:XMLJSONJSONPno matches
Refine listrefine by authorno optionstemporarily not availablerefine by venueno optionstemporarily not availablerefine by typeno optionstemporarily not availablerefine by access?no optionstemporarily not availablerefine by yearno optionstemporarily not availablePublication search resultsexport search results asfirst 1000 hits only:XMLJSONJSONPBibTeXfound 7,130,271 matchesskipping 7,130,271 more matches[next >>]loading more results ? failed to load more results, please try again laterbrowse authors | editorsABCDEFGHIJKLMNOPQRSTUVWXYZbrowse journalsABCDEFGHIJKLMNOPQRSTUVWXYZby publisherbrowse conferences | workshopsABCDEFGHIJKLMNOPQRSTUVWXYZbrowse seriesCoRRLNCSCEUR-WSLNEEIFIPLNIEPTCSLIPICSotherbrowse monographsbooks & thesesreference worksedited collectionsdblp blog
2024-01-01: 7 million publications
[News]
read as PDF
(read full post)
2023-05-22: DTD update May 2023
[News]
(updated 2023-06-28) A few days ago, we discussed the new dataset publications in dblp. As a preparation for more and more detailed datasets we slightly modify the DTD that defines the structure of our XML data export. A quick reminder: you can download the dblp dataset as a single XML […]
(read full post)
2023-04-27: Dataset publications in dblp
[Blog]
[Feature Spotlight]
Datasets and other research artifacts are a major topic in the scientific community in the recent years. Many ongoing projects focus on improving the standardization, publication and citation of these artifacts. Currently, the dblp team is involved in three of them: NFDI4DataScience, NFDIxCS, and Unknown Data. As part of these […]
(read full post)
2022-11-14: Building the German Research Data Infrastructure NFDI – for and with Computer Science
[Press Release]
On November 4, 2022, the Joint Science Conference (GWK) selected Schloss Dagstuhl – Leibniz Center for Informatics and the consortium NFDIxCS for federal and state funding within the German National Research Data Infrastructure (NFDI). The consortium will be funded?in the double-digit millions of Euros and over a duration of five […]
(read full post)
2022-09-09: Updates to the dblp RDF schema
[News]
In the six months since the release of the dblp RDF dump and its persistent snapshot releases, the RDF dump has been downloaded a total of about a thousand times. We are pleased to see that the community is interested in using our semantic data in their research and beyond. […]
(read full post)
more blog postsAbout dblpThe dblp computer science bibliography provides open bibliographic information on major computer science journals and proceedings.
Originally created at the University of Trier in 1993, dblp is now operated and further developed by Schloss Dagstuhl. For more information check out our F.A.Q.
dblp statistics# of publications: 7,130,271# of authors: 3,459,863# of conferences: 6,596# of journals: 1,861# of records added to dblp:more statisticsXML dataYou may download the raw dblp data in a single XML file. A simple DTD is available. The paper DBLP - Some Lessons Learned documents technical details of this XML file. In the appendix DBLP XML Requests you may find the description of a primitive dblp query API. All metadata is released as open data under CC0 1.0 license. RSS feedsdblp blognew issues and volumesRelated resourcesACM Digital LibraryIEEE Xplore | CSDLarXiv.orgSemantic ScholarCiteSeerXBibSonomyINSPIRE-HEPMathSciNetPubMedRePEczbMATHmore external linksSocial media links a service of ?homeblogstatisticsupdate feedXML dumpRDF dumpbrowsepersonsconferencesjournalsseriessearchsearch dblplookup by IDaboutf.a.q.teamlicenseprivacyimprintnfdidblp is part of theGerman National ResearchData Infrastructure (NFDI)NFDI4DataScienceORKGCEURMyBinderevents | twitter | publicationsNFDIxCSevents | twitter
manage site settingsTo protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.Unpaywalled article linksAdd open access links from to the list of external document links (if available).load links from unpaywall.orgPrivacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.Archived links via Wayback MachineFor web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).load content from archive.orgPrivacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.Reference listsAdd a list of references from , , and to record detail pages.load references from crossref.org and opencitations.netPrivacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.Citation dataAdd a list of citing articles from and to record detail pages.load citations from opencitations.netPrivacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.OpenAlex dataLoad additional information about publications from .load data from openalex.orgPrivacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex. ?retrieved on 2024-03-07 11:05 CET from data curated by the dblp team?all metadata released as open data under CC0 1.0 licensesee also: Terms of Use | Privacy Policy | Imprintdblp was originally created in 1993 at: ? since 2018, dblp has been operated and maintained by: ? the dblp computer science bibliography is funded and supported by: ? ? ? ? ? ?
一文看懂YOLO v3 - 知乎
一文看懂YOLO v3 - 知乎切換模式寫文章登錄/注冊一文看懂YOLO v3小綠葉人工智能小綠葉我的CSDN博客:https://blog.csdn.net/litt1e我的公眾號:工科宅生活論文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf論文:YOLOv3: An Incremental ImprovementYOLO系列的目標檢測算法可以說是目標檢測史上的宏篇巨作,接下來我們來詳細介紹一下YOLO v3算法內(nèi)容,v3的算法是在v1和v2的基礎上形成的,所以有必要先回憶:一文看懂YOLO v2,一文看懂YOLO v2。網(wǎng)絡結構從這兒盜了張圖,這張圖很好的總結了YOLOV3的結構,讓我們對YOLO有更加直觀的理解。DBL:代碼中的Darknetconv2d_BN_Leaky,是yolo_v3的基本組件。就是卷積+BN+Leaky relu。resn:n代表數(shù)字,有res1,res2, … ,res8等等,表示這個res_block里含有多少個res_unit。不懂resnet請戳這兒concat:張量拼接。將darknet中間層和后面的某一層的上采樣進行拼接。拼接的操作和殘差層add的操作是不一樣的,拼接會擴充張量的維度,而add只是直接相加不會導致張量維度的改變。后面我們一起分析網(wǎng)絡一些細節(jié)與難懂的地方backbone:darknet-53為了達到更好的分類效果,作者自己設計訓練了darknet-53。作者在ImageNet上實驗發(fā)現(xiàn)這個darknet-53,的確很強,相對于ResNet-152和ResNet-101,darknet-53不僅在分類精度上差不多,計算速度還比ResNet-152和ResNet-101強多了,網(wǎng)絡層數(shù)也比他們少。Yolo_v3使用了darknet-53的前面的52層(沒有全連接層),yolo_v3這個網(wǎng)絡是一個全卷積網(wǎng)絡,大量使用殘差的跳層連接,并且為了降低池化帶來的梯度負面效果,作者直接摒棄了POOLing,用conv的stride來實現(xiàn)降采樣。在這個網(wǎng)絡結構中,使用的是步長為2的卷積來進行降采樣。為了加強算法對小目標檢測的精確度,YOLO v3中采用類似FPN的upsample和融合做法(最后融合了3個scale,其他兩個scale的大小分別是26×26和52×52),在多個scale的feature map上做檢測。作者在3條預測支路采用的也是全卷積的結構,其中最后一個卷積層的卷積核個數(shù)是255,是針對COCO數(shù)據(jù)集的80類:3*(80+4+1)=255,3表示一個grid cell包含3個bounding box,4表示框的4個坐標信息,1表示objectness score。output所謂的多尺度就是來自這3條預測之路,y1,y2和y3的深度都是255,邊長的規(guī)律是13:26:52。yolo v3設定的是每個網(wǎng)格單元預測3個box,所以每個box需要有(x, y, w, h, confidence)五個基本參數(shù),然后還要有80個類別的概率。所以3×(5 + 80) = 255。這個255就是這么來的。下面我們具體看看y1,y2,y3是如何而來的。網(wǎng)絡中作者進行了三次檢測,分別是在32倍降采樣,16倍降采樣,8倍降采樣時進行檢測,這樣在多尺度的feature map上檢測跟SSD有點像。在網(wǎng)絡中使用up-sample(上采樣)的原因:網(wǎng)絡越深的特征表達效果越好,比如在進行16倍降采樣檢測,如果直接使用第四次下采樣的特征來檢測,這樣就使用了淺層特征,這樣效果一般并不好。如果想使用32倍降采樣后的特征,但深層特征的大小太小,因此yolo_v3使用了步長為2的up-sample(上采樣),把32倍降采樣得到的feature map的大小提升一倍,也就成了16倍降采樣后的維度。同理8倍采樣也是對16倍降采樣的特征進行步長為2的上采樣,這樣就可以使用深層特征進行detection。作者通過上采樣將深層特征提取,其維度是與將要融合的特征層維度相同的(channel不同)。如下圖所示,85層將13×13×256的特征上采樣得到26×26×256,再將其與61層的特征拼接起來得到26×26×768。為了得到channel255,還需要進行一系列的3×3,1×1卷積操作,這樣既可以提高非線性程度增加泛化性能提高網(wǎng)絡精度,又能減少參數(shù)提高實時性。52×52×255的特征也是類似的過程。從圖中,我們可以看出y1,y2,y3的由來。Bounding BoxYOLO v3的Bounding Box由YOLOV2又做出了更好的改進。在yolo_v2和yolo_v3中,都采用了對圖像中的object采用k-means聚類。 feature map中的每一個cell都會預測3個邊界框(bounding box) ,每個bounding box都會預測三個東西:(1)每個框的位置(4個值,中心坐標tx和ty,,框的高度bh和寬度bw),(2)一個objectness prediction ,(3)N個類別,coco數(shù)據(jù)集80類,voc20類。三次檢測,每次對應的感受野不同,32倍降采樣的感受野最大,適合檢測大的目標,所以在輸入為416×416時,每個cell的三個anchor box為(116 ,90); (156 ,198); (373 ,326)。16倍適合一般大小的物體,anchor box為(30,61); (62,45); (59,119)。8倍的感受野最小,適合檢測小目標,因此anchor box為(10,13); (16,30); (33,23)。所以當輸入為416×416時,實際總共有(52×52+26×26+13×13)×3=10647個proposal box。感受一下9種先驗框的尺寸,下圖中藍色框為聚類得到的先驗框。黃色框式ground truth,紅框是對象中心點所在的網(wǎng)格。這里注意bounding box 與anchor box的區(qū)別:Bounding box它輸出的是框的位置(中心坐標與寬高),confidence以及N個類別。anchor box只是一個尺度即只有寬高。LOSS FunctionYOLOv3重要改變之一:No more softmaxing the classes。YOLO v3現(xiàn)在對圖像中檢測到的對象執(zhí)行多標簽分類。早期YOLO,作者曾用softmax獲取類別得分并用最大得分的標簽來表示包含再邊界框內(nèi)的目標,在YOLOv3中,這種做法被修正。softmax來分類依賴于這樣一個前提,即分類是相互獨立的,換句話說,如果一個目標屬于一種類別,那么它就不能屬于另一種。但是,當我們的數(shù)據(jù)集中存在人或女人的標簽時,上面所提到的前提就是去了意義。這就是作者為什么不用softmax,而用logistic regression來預測每個類別得分并使用一個閾值來對目標進行多標簽預測。比閾值高的類別就是這個邊界框真正的類別。用簡單一點的語言來說,其實就是對每種類別使用二分類的logistic回歸,即你要么是這種類別要么就不是,然后便利所有類別,得到所有類別的得分,然后選取大于閾值的類別就好了。logistic回歸用于對anchor包圍的部分進行一個目標性評分(objectness score),即這塊位置是目標的可能性有多大。這一步是在predict之前進行的,可以去掉不必要anchor,可以減少計算量。如果模板框不是最佳的即使它超過我們設定的閾值,我們還是不會對它進行predict。不同于faster R-CNN的是,yolo_v3只會對1個prior進行操作,也就是那個最佳prior。而logistic回歸就是用來從9個anchor priors中找到objectness score(目標存在可能性得分)最高的那一個。logistic回歸就是用曲線對prior相對于 objectness score映射關系的線性建模。以上是一段keras框架描述的yolo v3 的loss_function代碼。忽略恒定系數(shù)不看,可以從上述代碼看出:除了w, h的損失函數(shù)依然采用總方誤差之外,其他部分的損失函數(shù)用的是二值交叉熵。最后加到一起。那么這個binary_crossentropy又是個什么玩意兒呢?就是一個最簡單的交叉熵而已,一般用于二分類,這里的兩種二分類類別可以理解為"對和不對"這兩種。參考文章:https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6bhttps://blog.csdn.net/yanzi6969/article/details/80505421https://blog.csdn.net/chandanyan8568/article/details/81089083https://blog.csdn.net/leviopku/article/details/82660381https://blog.csdn.net/u014380165/article/details/80202337發(fā)布于 2019-03-31 10:24人工智能深度學習(Deep Learning)目標檢測?贊同 44??5 條評論?分享?喜歡?收藏?申請
DBL是什么意思? - DBL的全稱 | 在線英文縮略詞查詢
DBL是什么意思? - DBL的全稱 | 在線英文縮略詞查詢
↓ 跳到主內(nèi)容
English???????БългарскиCatalà?e?tinaCymraegDanskDeutschΕλληνικ?Espa?olEesti?????SuomiFran?ais??????????????JezikAyititMagyarBahasa IndonesiaItaliano日本語???Lietuvi?Latvie?uMelayuMaltiNorskNederlandsPolskiPortuguêsRoman?РусскийSloven?inasloven??inaSvenska???Türk?eукра?нська????Vi?t Nam繁體中文
首頁 ? 3 個字母 ? DBL
DBL 是什么意思?
你在尋找DBL的含義嗎?在下圖中,您可以看到DBL的主要定義。 如果需要,您還可以下載要打印的圖像文件,或者您可以通過Facebook,Twitter,Pinterest,Google等與您的朋友分享。要查看DBL的所有含義,請向下滾動。 完整的定義列表按字母順序顯示在下表中。
DBL的主要含義
下圖顯示了DBL最常用的含義。 您可以將圖像文件下載為PNG格式以供離線使用,或通過電子郵件發(fā)送給您的朋友。如果您是非商業(yè)網(wǎng)站的網(wǎng)站管理員,請隨時在您的網(wǎng)站上發(fā)布DBL定義的圖像。
DBL的所有定義
如上所述,您將在下表中看到DBL的所有含義。 請注意,所有定義都按字母順序列出。您可以單擊右側的鏈接以查看每個定義的詳細信息,包括英語和您當?shù)卣Z言的定義。
首字母縮寫詞定義DBL三角洲籃球聯(lián)賽DBL下來由法律DBL不要遲到DBL代頓商界領袖DBL分布 Bernard LlechaDBL分裂的位線DBL雙DBL雙齒輪減速機DBL唐志強 LiluahDBL域塊列表DBL基于分布的物流DBL基于磁盤的查找DBL崇 LambertDBL開發(fā)基線DBL德肖恩 B.LeroyDBL數(shù)字校樣DBL數(shù)據(jù)庫語言DBL數(shù)據(jù)庫鎖DBL杜邀請里昂DBL殘疾DBL殘疾福利法DBL設計兄弟有限公司DBL設計基于學習DBL達菲綁定類似DBL運球伯特蘭瑟DBL透鏡之間的距離DBL鉆石棒球聯(lián)賽
? DCH
DCL ?
語言
English???????БългарскиCatalà?e?tinaCymraegDanskDeutschΕλληνικ?Espa?olEesti?????SuomiFran?ais??????????????JezikAyititMagyarBahasa IndonesiaItaliano日本語???Lietuvi?Latvie?uMelayuMaltiNorskNederlandsPolskiPortuguêsRoman?РусскийSloven?inasloven??inaSvenska???Türk?eукра?нська????Vi?t Nam繁體中文
簡體中文
Recent Posts
文章分類??
>>? ?
1? ?
2? ?
3? ?
4? ?
5? ?
6? ?
7? ?
8? ?
9? ?
10? ?
A? ?
B? ?
C? ?
D? ?
E? ?
F? ?
G? ?
H? ?
I? ?
J? ?
K? ?
L? ?
M? ?
N? ?
O? ?
P? ?
Q? ?
R? ?
S? ?
T? ?
U? ?
V? ?
W? ?
X? ?
Y? ?
Z? ?
? 2014 - 2023
Abbreviation Finder. 站點地圖 | Recent Posts
Terms of Use | Privacy Policy | About Us | Blog
Characters | Dragon Ball Legends | DBZ Space
Characters | Dragon Ball Legends | DBZ Space
NewsCharactersStorySummonsMissionsItems
close
Page
Site
Search
NewsCharactersListTagsExtrasBoosted Drop ItemsComparisonEXP LVLskeyboard_arrow_rightkeyboard_arrow_downStoryMainEventsStatus IconsPlayer Viewskeyboard_arrow_rightkeyboard_arrow_downSummonsCrystalsTicketsSuggestion Utilitykeyboard_arrow_rightkeyboard_arrow_downMissionsItemsEquipmentJob RequestsMedalsSoulsTitlesTrainingZ Powerskeyboard_arrow_rightkeyboard_arrow_downExchange ShopTraining GroundsZ LevelsHelpTournamentsResourcesGamePress LegendsOfficial Sitekeyboard_arrow_rightkeyboard_arrow_down
Settings
Display Intro Header
Reset Language
keyboard_arrow_rightkeyboard_arrow_down
ListTagsExtrasBoosted Drop ItemsComparisonEXP LVLs
Characters
- Rarity -
Ultra
Sparking
Extreme
Hero
- Color -
Red
Yellow
Purple
Green
Blue
Light
Ability Boost Mode (Beta)
Select 7-15 Characters to find the best Team Ability Boost Combinations
Super Janemba
Super Saiyan God SS Vegito
Legendary Super Saiyan Broly
Super Vegito
Ultra Instinct -Sign- Goku
Buu: Kid
Hit
Super Saiyan God SS Kaioken Goku
Super Saiyan Rosé Goku Black
Super Saiyan God SS Gogeta
Super Gogeta
Vegeta
Super Saiyan Goku
Omega Shenron
Android #17
Legends Limited
Goku & Final Form Frieza
Legends Limited
Beast Gohan
Legends Limited
Perfect Form Cell
Legends Limited
Super Saiyan Goku
Legends Limited
Gamma 1 & Gamma 2
Legends Limited
Goku
Legends Limited
Goku (Youth)
Legends Limited
Super Saiyan 3 & Super Saiyan 2 Goku & Vegeta
Legends Limited
Super Vegeta
Legends Limited
Super #17
Legends Limited
Ultra Instinct Goku
Legends Limited
Super Saiyan God SS Evolved & Super Saiyan God SS Kaioken Vegeta & Goku
Legends Limited
Super Saiyan 4 Goku & Vegeta
Legends Limited
Super Saiyan 2 & Super Saiyan God SS Trunks (Adult) & Vegeta
Legends Limited
Goku & Bardock
Legends Limited
Ultimate Gohan
Legends Limited
Android #17 & Android #18
Legends Limited
Jeice & Burter
Super Saiyan God SS Gogeta
Legends Limited
Master Roshi
Final Form Cooler
Legends Limited
Super Saiyan Trunks (Teen)
Legends Limited
Jiren: Full Power
Legends Limited
zenkaier
Super Saiyan Trunks (Adult)
Legends Limited
zenkaier
Jiren
Android #16
Super Saiyan Trunks (Adult)
Piccolo Jr.
Power Awakening Piccolo
Super Saiyan 3 Goku
Legends Limited
Perfect Cell
Legends Limited
Super Saiyan Broly: Full Power
Legends Limited
Super Saiyan 4 Gogeta
Legends Limited
zenkaier
Super Saiyan God SS Goku & Vegeta
Legends Limited
Zamasu
2nd Form Cell
Demon King Piccolo
Bardock
Legends Limited
zenkaier
Hero Tapion
Pikkon
Legends Limited
Buu: Kid
Legends Limited
Super Saiyan God SS Vegito
Legends Limited
zenkaier
Super Saiyan God SS Evolved Vegeta
Legends Limited
zenkaier
Golden Frieza
Super Saiyan Broly: Full Power
Gamma 2
Master Roshi
Super Saiyan Gohan (Youth)
Android #8
Gamma 1
Super Saiyan Gohan
Legends Limited
Mecha Frieza
Super Saiyan God SS Goku
Legends Limited
Goku
Goku
Captain Ginyu
Golden Frieza
Bulla: Vegeta (Assist)
Pan: Trunks & Giru (Assist)
God of Destruction Toppo
zenkaier
Magenta
Fusion Zamasu
Ultra Instinct -Sign- Goku
Legends Limited
zenkaier
Android #13
Super Saiyan Goku
Fused with Nail Piccolo
Kaioken Goku
zenkaier
Final Form Frieza: Full Power
Legends Limited
zenkaier
Kahseral
Super Saiyan Trunks (Teen)
Super Saiyan Rosé Goku Black
Legends Limited
zenkaier
Power Awakening Piccolo
Legends Limited
Super Saiyan Goku
Pui Pui
Super Saiyan 4 Goku
Legends Limited
zenkaier
Super Saiyan Gogeta
Broly
Android #17
Super Saiyan 2 Kefla
Super #17
Majin Vegeta
Vegeta
Legends Limited
zenkaier
Half-Corrupted Fusion Zamasu
Legends Limited
Android #17
Android #18
Android #18
Ultimate Gohan
Final Form Frieza
Final Form Frieza
Super Saiyan Broly
Tien
Saiyan in Red
Gohan
Launch
Super Saiyan Gohan (Youth)
Legends Limited
Goku
Super Saiyan 2 Kefla
Super Saiyan God SS Vegito
Super Saiyan Vegeta
Majuub
Recoome & Guldo
Fusion Zamasu
zenkaier
Gotenks
Final Form Frieza
Goku Black
Super Saiyan God SS Vegeta
Super Full Power Saiyan 4 Goku
zenkaier
Hero Tapion
Super Saiyan Trunks (Teen)
Gohan (Kid): Piccolo (Assist)
Kyawei
Nappa
Pan
1st Form Cell
Omega Shenron
zenkaier
1st Form Frieza
Jiren
zenkaier
Eis Shenron
Tien
Krillin
Final Form Cooler
Android #18
Metal Cooler
Goku Black
Ultimate Gohan Absorbed Buu: Super
Bergamo
zenkaier
Red Ribbon Army Piccolo
Super Saiyan Trunks (Adult) (Rage)
Zamasu: Goku Black (Assist)
Nuova Shenron
God of Destruction Beerus
Super Saiyan God SS Vegeta
Super Saiyan 3 Goku
Super Saiyan 3 Goku
Legends Limited
zenkaier
Perfect Form Cell
Android #21: Good
zenkaier
Trunks: Mai (Assist)
zenkaier
Whis
Boujack
Super Saiyan Gohan (Youth)
Buu: Kid
Metal Cooler
Super Saiyan 2 Caulifla: Kale (Assist)
Super Saiyan 2 Trunks (Adult)
Super Saiyan Vegeta
Super Saiyan Rosé Goku Black
Demon King Piccolo (Aged)
Super Saiyan God SS Goku
Full Power Boujack
Hit
Super Saiyan God SS Vegeta
Syn Shenron
Super Saiyan 3 Goku
God of Destruction Champa
Wasteland Bandit Yamcha
Goku
Super Saiyan God SS Goku
Super Saiyan 2 Kefla
zenkaier
Super Saiyan God SS Goku
Broly: Cheelai (Assist)
zenkaier
Legendary Super Saiyan Broly
Toppo
Android #21
zenkaier
Vegeta
Legends Limited
zenkaier
Turles
Super Saiyan God SS Vegeta
Legends Limited
zenkaier
Goku
zenkaier
Buu: Super
Goku Black
Zahha
Goku
Super Saiyan God SS Goku
Fusion Android #13
zenkaier
Super Kaioken Goku
Super Saiyan 2 Gohan (Youth)
Legends Limited
zenkaier
Super Saiyan Goku
Super Saiyan Trunks (Teen)
zenkaier
Vegito
Super Saiyan God Goku
Super Gogeta
zenkaier
Super Saiyan Rosé Goku Black
zenkaier
Super Saiyan 4 Vegeta
zenkaier
Bardock
Final Form Frieza: Full Power
zenkaier
Super Saiyan 2 Goku
Goku
zenkaier
Gotenks Absorbed Buu: Super
zenkaier
Great Saiyaman 1 & 2 (Assist)
zenkaier
Basil
Super Saiyan Goten (Kid)
Legends Limited
zenkaier
Super Janemba
zenkaier
Super Saiyan Goku
Buu: Super
Super Saiyan Gohan (Teen)
zenkaier
Lavender
Vegeta
Super Saiyan Gotenks
Bardock
Goten (Kid)
Super Baby 2
zenkaier
Super Saiyan 4 Goku
zenkaier
Golden Frieza
Vegeta
Buu: Kid
God of Destruction Beerus
Super #17
zenkaier
Ribrianne
Super Saiyan God Goku
Android #21: Evil
zenkaier
Super Saiyan Vegeta
Ultimate Gohan Absorbed Buu: Super
Gohan (Adult)
Goku
Kakarot Goku
zenkaier
Super Saiyan God SS Goku
zenkaier
Baby Vegeta
Trunks (Kid)
Raditz
1st Form Frieza
Legends Limited
zenkaier
Dyspo
Bulma (Youth)
Super Saiyan Gohan (Youth)
Android #17
zenkaier
Super Vegito
Legends Limited
zenkaier
Legendary Super Saiyan Broly
zenkaier
Android #18
Piccolo
Legends Limited
zenkaier
Ultimate Gohan Absorbed Buu: Super
1st Form Cell
Android #13
Kakunsa
Perfect Cell
zenkaier
Hyper Meta-Rilldo
Super Saiyan 3 Gotenks
zenkaier
Hero Tapion
Vados
Super Saiyan God SS Vegeta
zenkaier
Vegito
zenkaier
Super Saiyan Kale (Berserk)
zenkaier
Goku Black
Goku
Legends Limited
zenkaier
Turles
zenkaier
Hit
Final Form Frieza
Super Saiyan Gohan (Teen)
Pikkon
Gohan
zenkaier
Gogeta
zenkaier
Android #21
zenkaier
Super Saiyan 2 Caulifla
zenkaier
Great Saiyaman 1
Great Saiyaman 2
Super Saiyan Vegeta
Super Gogeta
zenkaier
Super Saiyan Vegeta
zenkaier
1st Form Frieza
Super Saiyan Goku
zenkaier
Super Saiyan Cabba
zenkaier
Ultimate Gohan
zenkaier
Super Saiyan 3 Goku
Rozie
Final Form Cooler
zenkaier
Android #14
Super Namekian Lord Slug
zenkaier
Majin Vegeta
zenkaier
Super Saiyan Goku
Metal Cooler
zenkaier
Cooler
Boujack
Super Saiyan God SS Goku
zenkaier
Super Saiyan Broly
zenkaier
Nappa (Young)
Trunks (Teen)
Majin Buu: Good
zenkaier
Super Saiyan Gohan
Android #15
Vegeta
zenkaier
Goku
Goku Captain Ginyu
Zamasu
Super Saiyan 3 Goku
zenkaier
Vegeta
Super Saiyan Gotenks
Cooler
Super Saiyan Bardock
zenkaier
Super Janemba
zenkaier
Piccolo
zenkaier
Fused with Kami Piccolo
zenkaier
Pan
zenkaier
Super Saiyan Goku
Super Saiyan 2 Trunks (Adult)
zenkaier
Final Form Frieza
zenkaier
Super Saiyan 2 Goku
zenkaier
God of Destruction Beerus
Legends Limited
zenkaier
Krillin
Super Saiyan 2 Vegeta
Super Saiyan God Goku
Vegeta
Super Saiyan Goku
Goku Black
zenkaier
Videl
Broly: Fury
zenkaier
Pikkon
Super Saiyan God Vegeta
zenkaier
King of the Demon Realm Dabura
Bunny Girl Bulma (Youth)
Captain Ginyu
Chi-Chi
zenkaier
Gotenks
zenkaier
Android #18
Super Saiyan Goku
zenkaier
Perfect Form Cell
zenkaier
Demon King Piccolo
zenkaier
Bardock
Goku (Youth)
zenkaier
Goku
zenkaier
Chilled
zenkaier
Super Saiyan 2 Gohan (Youth)
zenkaier
Super Saiyan Trunks (Kid)
Bulma (Youth)
zenkaier
Mai
Fused with Kami Piccolo
zenkaier
Android #16
zenkaier
Super Vegeta
zenkaier
Super Saiyan Goten (Kid)
Perfect Form Cell
Taitans Yamcha
Super Trunks
zenkaier
Android #18
zenkaier
Super Saiyan Goku
Legendary Super Saiyan Broly
zenkaier
Gohan (Kid)
Super Saiyan Goku
zenkaier
Trunks (Youth)
zenkaier
Goku
zenkaier
Super Saiyan Trunks (Teen)
zenkaier
World Champion Hercule
Android #18
Gohan (Kid) & Krillin
Majuub
Jiren
Omega Shenron
Super Saiyan God SS Vegeta
Thouser
Trunks
Metal Cooler
Bardock
Super Saiyan 2 Gohan (Youth)
Super Saiyan God SS Goku
Cell Jr.
God of Destruction Champa
Final Form Frieza
Gohan & Trunks (Youth)
Final Form Frieza
Vados
Fasha
Tora
Super Saiyan Kale (Berserk)
Gokua
Final Form Cooler
Bergamo
Monrei
Yurin
Turles
Legendary Super Saiyan Broly
Raspberry
Toppo
Kale
Kaiwareman
Gogeta
Kyukonman
Dyspo
Mai
Guprei
Super Saiyan 3 Gotenks
Yajirobe
Navel
Ramon
Bido
Broly
Super Saiyan 2 Goku
Nabana
Roberry
Full Power Boujack
Super Baby 2
Saibaman
Whis
Super Trunks
Appule
Super #17
Jinkouman
Nail
Zangya
Videl
Super Saiyan Goku
Majin Buu: Good
Bujin
Ribrianne
Tennenman
Buu: Super
Gohan (Kid)
Tien
Chi-Chi
Copyman
Master Roshi
Final Form Frieza
King of the Demon Realm Dabura
Orlen
Hit
Chilled
Yamcha
Baby Vegeta
Android #13
Super Saiyan Goku
Gohan (Kid)
Goku
Trunks (Youth)
Shugesh
Super Vegeta
Borgos
Recoome
Goku Black
Zangya
Majin Buu: Pure Evil
zenkaier
Captain Ginyu
zenkaier
Krillin
Super Saiyan Rosé Goku Black
Kakunsa
Zamasu
Android #14
2nd Form Frieza
Hyper Meta-Rilldo
Goku (Youth)
Videl
Krillin
zenkaier
Syn Shenron
Android #15
Trunks
Boujack
Rozie
Trunks (Kid)
3rd Form Frieza
Super Janemba
Perfect Form Cell
Super Namekian Lord Slug
Jeice
Shisami
God of Destruction Beerus
zenkaier
1st Form Frieza
zenkaier
Trunks (Teen)
Vegeta
zenkaier
Bulma (Youth)
Tien
Demon King Piccolo
Gohan
zenkaier
Super Saiyan Vegeta
Burter
Tora
Turles
Android #17
Android #18
Tien
Vegeta
Pan: Honey
Android #16
Guldo
Caulifla
Fasha
2nd Form Cell
zenkaier
Fused with Nail Piccolo
Krillin
Super Saiyan Trunks (Teen)
Mai
Cell Jr.
Gohan (Youth)
Super Saiyan Vegeta
Yamcha
Cooler
Thouser
Cabba
Trunks (Kid)
Mercenary Tao
Goten (Kid)
Dodoria
Final Form Frost
Master Roshi
Bardock
1st Form Frieza
Chiaotzu
Zarbon
Vegeta
Pan
Android #18
zenkaier
Android #17
zenkaier
Raditz
zenkaier
Goku
Android #20
Nappa
zenkaier
Android #19
Trunks (Teen)
1st Form Cell
zenkaier
Videl
Mercenary Tao
Nail
Thouser
Turles
Krillin
Super Saiyan Goku
2nd Form Cell
World Champion Hercule
Nappa
1st Form Cell
Goku
Fused with Nail Piccolo
Raditz
Recoome
Shallot
Vegeta
Pan
Krillin
Cabba
Captain Ginyu
Cell Jr.
Tien
Zarbon
Jaco
Goku
2nd Form Frieza
Chiaotzu
Master Roshi
Final Form Frost
Saibaman
Jaco
Guldo
Saibaman
Gohan (Kid)
1st Form Frieza
Yamcha
Yamcha
Dodoria
Android #19
Jeice
Burter
Android #20
Pikkon
Load More
0 / 15 Characters
Reset
Next
Privacy Policy
DRAGON BALL LEGENDS|Bandai Namco Entertainment Official Site
DRAGON BALL LEGENDS|Bandai Namco Entertainment Official Site
CHARACTERS
NEWS
MEDIA
TUTORIALS
STORY
Bandai Namco ID
EN
JP
EN
FR
DE
ES
KR
TW
DOWNLOAD FOR FREE*
60M+
PLAYERS WORLDWIDE
1M+
SOCIAL MEDIA FOLLOWERS
400+
AMAZING 3D CHARACTERS
News
100+ CHARACTERS
Collect hundreds of characters from different sagas
PvP BATTLES
Compete in real-time battles against fans from around the world.
Discover Our Game Modes
Story ModeLearn more
Co-op BattlesLearn more
Tournament of POWERLearn more
Tutorial Series
TAKE THE TEST
From beginnerto expert!
FAQ CORNER
Get your questionsanswered NOW!
VIDEO TIPS
Watch videolessons NOW!
Latest News
To view this content, please allow our site to use cookies.Click here to adjust your Cookie Settings.
DOWNLOAD NOW!
DRAGON BALL LEGENDS
Home
CHARACTERS
NEWS
MEDIA
TUTORIALS
STORY
Bandai Namco ID
LEGAL
iOS Support
Android Support
Terms of Service
Privacy Policy
DRAGON BALL LEGENDS
SHARE WITH FRIENDS
In-app purchases available.
Apple and the Apple logo are trademarks of Apple Inc., registered in the U.S. and other countries and regions.
App Store is a service mark of Apple Inc.
Google Play and the Google Play logo are trademarks of Google LLC.
?BIRD STUDIO/SHUEISHA, TOEI ANIMATION?Bandai Namco Entertainment Inc.
Dragon Ball Legends | DBZ Space
Dragon Ball Legends | DBZ Space
NewsCharactersStorySummonsMissionsItems
close
Page
Site
Search
NewsCharactersListTagsExtrasBoosted Drop ItemsComparisonEXP LVLskeyboard_arrow_rightkeyboard_arrow_downStoryMainEventsStatus IconsPlayer Viewskeyboard_arrow_rightkeyboard_arrow_downSummonsCrystalsTicketsSuggestion Utilitykeyboard_arrow_rightkeyboard_arrow_downMissionsItemsEquipmentJob RequestsMedalsSoulsTitlesTrainingZ Powerskeyboard_arrow_rightkeyboard_arrow_downExchange ShopTraining GroundsZ LevelsHelpTournamentsResourcesGamePress LegendsOfficial Sitekeyboard_arrow_rightkeyboard_arrow_down
Settings
Display Intro Header
Reset Language
keyboard_arrow_rightkeyboard_arrow_down
News
Event
"Treasure Battle" Begins!
02/20/2024 11:30 PM (CST)
~
12/31/2029 09:00 AM (CST)
03/05/2024 11:35 PM (CST)
Important
Important: Data Transfer Settings
Click here if you want to change your device
02/20/2024 11:30 PM (CST)
~
12/31/2029 09:00 AM (CST)
02/21/2024 02:55 AM (CST)
News
About Equipment
02/20/2024 11:30 PM (CST)
~
12/31/2029 09:00 AM (CST)
02/21/2024 02:55 AM (CST)
Event
"Vegeta, Prince of All Saiyans - Rebellion Against Frieza! -" On Now!
10/20/2021 12:30 AM (CDT)
~
12/31/2029 09:00 AM (CST)
11/28/2023 11:40 PM (CST)
Event
"Eliminate the Earthlings" Now On!
11/18/2020 12:00 AM (CST)
~
12/31/2029 09:00 AM (CST)
11/28/2023 11:40 PM (CST)
Event
Play "Legends Road - Gotenks -" Whenever You Want!
12/22/2021 12:00 AM (CST)
~
12/31/2029 09:00 AM (CST)
11/28/2023 11:40 PM (CST)
Summon
"LET'S GO LEGENDS!! LEGENDS LIMITED Guaranteed Ticket Summon" Is Now On!
05/18/2022 01:00 AM (CDT)
~
12/31/2029 09:00 AM (CST)
11/28/2023 11:40 PM (CST)
Event
From the Original Series "The Dreaded Ginyu Force" Is Now Available In SCREAM Difficulty!
07/21/2021 01:00 AM (CDT)
~
12/31/2029 09:00 AM (CST)
11/21/2023 11:35 PM (CST)
Event
From the Original Series "The Advent of Frieza, the Universal Emperor!" Overhaul!
12/09/2020 12:00 AM (CST)
~
12/31/2029 09:00 AM (CST)
11/21/2023 05:30 AM (CST)
Event
From the Original Series "Fierce Battle! Vegeta the Prince of Fate" Overhaul!
11/11/2020 12:00 AM (CST)
~
12/31/2029 09:00 AM (CST)
11/21/2023 05:30 AM (CST)
Older
Privacy Policy
Dragon Ball Legends Database
Dragon Ball Legends Database
Main Menu
Home
News
Characters
Summons
Events
Items
Equipment
Messages
Missions
Extras
Help
Links
Hydros' Twitter
Join the Discord
Subreddit
Dragon Ball Legends Wiki France
Widen Legends ES
MyHeroUI Database
MyHeroUR Database
Dokkan Wiki
Official Global Twitter
Official Japan Twitter
Language
English
日本語
Fran?ais
Espa?ol
Deutsch
中文
???
Latest Characters
Broly: Fury
Golden Frieza
Super Saiyan 2 Gohan (Youth)
Perfect Form Cell
Perfect Cell
LEGENDS LIMITED
Super Vegeta
Android #16
Latest Equipment
Latest Summons
Latest Events
Latest News
DBLegends.net v0.8.4a
Privacy Policy
???
Patreon
???